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Abstract. We introduce a class of random spin systems without frustration, which satisfies the
conditions for gauge symmetry. The method of gauge transformation provides several properties
on the phase diagram of gauge symmetric models; this method is almost rigorous, while the
derivation for the absence of re-entrance contains unproved assumption. In the present random
models, the absence of re-entrance can be shown exactly. Furthermore, the phase diagram and
the critical properties are exactly related with those in the original pure system. The present
random systems correspond to the Mattis model with asymmetric bond distribution in the Ising
case, and a kind of the gauge glass model in theXY case. In the case of the clock model in two
dimensions, we find a new thermodynamic phase which has long-range spin-glass correlation
with critical (power-decaying) ferromagnetic correlation.

1. Introduction

It has been a fascinating subject in physics to study the effects of randomness on cooperative
systems. One of the most interesting problems is the spin glass (SG) [1]. Since the
pioneering work of Edwards and Anderson (EA) [2], the SG problem has been investigated
as a phase transition in nature. Up to the mean-field model, which originates from the
work of Sherrington and Kirkpatrick [3], the theoretical picture of the EA model has been
established based on replica-symmetry breaking by Parisi [4]. The system exhibits a typical
many-valley structure in the phase space, the mixed phase of the ferromagnetic (FM) and
the SG phases, the Almeida–Thouless line in the external field and so on. Recent progress
in this field is devoted to short-range systems to know the lower critical dimension of the
SG transition and then to check the validity of the Parisi picture in real spin glasses. The
SG transition has been observed numerically in three-dimensional EA Ising models [5–7],
while it has been denied in the two-dimensional Ising and the three-dimensional Heisenberg
models [8, 9].

In connection with granular superconductor, theXY gauge glass model

H = −J
∑
〈ij〉

cos(φi − φj + ωij ) (1.1)

has attracted much attention, whereφi , ωij ∈ [0, 2π). In this model, the existence of the SG
ordering has been confirmed numerically in three dimensions [10–13] in contrast with±J
counterpart. There is a controversy about the existence of re-entrance in the weakly random
regime. The real-space renormalization group method with the Coulomb gas description
leads to the re-entrant transition in two and more dimensions [14, 15]. Experimental as
well as Monte Carlo studies indicate no re-entrance in two dimensions [16–18]. A Migdal–
Kadanoff type renormalization group calculation in three dimensions also failed to discover
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re-entrance [13, 19]. Recently, a modified analysis is presented for the Coulomb gas method
and shows the absence of it [20].

The re-entrant SG phase observed in real experiments [1, 21] and obtained in the replica-
symmetric solution in the mean field theory[3] does not appear in the solution by Parisi [4].
The method of gauge transformation [22–24] indicates the absence of re-entrant transition
in short-range EA Ising models with the±J or the Gaussian-bond distribution and in
the XY gauge glass model. It is consistent with numerical results [25–27] as well as
recent experiments in Ising-like spin glasses [28]. The method of gauge transformation is a
powerful technique to derive exact properties of random spin systems. It was first applied to
Ising spin glasses by Nishimori [22]. Kitatani [23] introduced the modified model providing
a plausible argument for the absence of re-entrance. Ozeki and Nishimori [24] generalize the
method to random systems with various symmetries including theXY gauge glass model.

Since randomness and frustration make it difficult to examine the short-range systems
analytically as well as numerically, only a few things have been confirmed definitely in spite
of a huge number of numerical studies. Thus, it is highly desirable to have solvable models
for understanding the thermodynamic and critical behaviours in random spin systems. The
asymmetric Mattis model is a random Ising model without frustrations. The phase diagram
is obtained exactly [29, 30]. The critical exponents for both SG and FM ordering are related
with those in the pure Ising model. This model is gauge symmetric, and the method of
gauge transformation can be applied to it [30].

We propose a randomization procedure for general spin systems, which provides a class
of random spin systems without frustration. These random systems are corresponding to
the asymmetric Mattis model in the Ising case. All models have gauge symmetry, and
the method of gauge transformation can be applied to them; the phase diagram is obtained
exactly. The critical exponents for both SG and FM ordering are related with those in
the original pure system. Since these models can be analysed exactly, they help us to
understand the phase transition and the critical phenomena in random systems and to check
the efficiency of methods to analyse them.

In section 2, a general representation of random spin systems is introduced to treat
various systems coherently. Using this representation, we construct a class of non-frustrated
random spin systems with gauge symmetry, and derive their exact properties in section 3.
In section 4, phase diagrams and critical exponents are obtained for several specific cases.
The last section is devoted to remarks.

2. General representation for random spin systems with gauge symmetry

In order to treat various spin systems coherently, first, we define the general representation
for random spin systems with gauge symmetry introduced by Ozeki and Nishimori [24].
Let us consider classical spin systems on a lattice withN lattice points. We make no
restrictions on the type or the dimension of the lattice, whereas one may suppose a usual
d-dimensional hypercubic lattice. The variableφi represents a local spin-state at theith
lattice point. The set8 is the space of spin states at one lattice point with a measure dµ(φ).
We denoteφ ≡ (φ1, . . . , φN) ∈ 8N a global spin-configuration for the totalN -spin system.
The measure ofφ is expressed as dµ{φ} = ∏N

i=1 dµ(φi). The non-random Hamiltonian is
denoted by

H0(φ) = J H̃0(φ) (2.1)

whereH̃0 is the dimensionless part ofH0. The notations are summarized in table 1.
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Table 1. Definitions and notations of variables.

Spin or thermal Randomness

Variable φi ωn
Set of space 8 �

Measure of variable dµ(φi) dν(ωn)
Number of variables N NR

Global configuration φ ω
Measure of global Ccnfiguration dµ{φ} dν{ω}
Local gauge transformation Uψ Vψ
Average 〈· · ·〉K [· · ·]c

Control parameter K = J/kBT Kp

Distribution exp{−KH̃(φ;ω)}/Z(K;ω) P (ω;Kp)

Table 2. Examples of models with symmetries and group operations.

Model Set8 Operationφ ◦ ψ Identity φE Inverseφ̄

Ising {+1,−1} φψ 1 φ

Zq {0, 1, . . . q − 1} φ + ψ (mod q) 0 −φ
XY [0, 2π) φ + ψ (mod 2π) 0 −φ
SU(2) {SU(2) matrices} φψ I φ†

Based on the spin system introduced above, random systems are generally expressed
in the following way. ConsiderNR random variablesωn ∈ � (n = 1, 2, . . . , NR). The
set� is the space of randomnessωn with a non-negative measure dν(ωn). We denote
ω ≡ (ω1, . . . , ωNR) ∈ �NR a global random-configuration for the totalNR-random variables.
The measure ofω is expressed as dν{ω} = ∏NR

n=1 dν(ωn). The Hamiltonian is a function
of bothφ andω;

H(φ;ω) = J H̃(φ;ω). (2.2)

We assume that there exists a particular state of randomness,ωE, with which the Hamiltonian
H(φ;ω) becomes identical toH0(φ) if ωn = ωE for all n. The thermal average at
temperatureT = J/kBK is expressed as

〈· · ·〉K ≡ Z(K,ω)−1
∫

dµ{φ} . . .exp{−KH̃(φ;ω)} (2.3)

whereZ(K;ω) is the partition function for the configurationω. The average over random
configurations is defined by

[· · ·]c ≡
∫

dν{ω}P(ω;Kp) . . . (2.4)

where P(ω;Kp) is the probability weight of the configurationω. The non-negative
parameterKp controls the degree of randomness. Without loss of generality, we assume
that the distribution functionP(ω;Kp) approaches to the delta function,

P(ω;Kp) →
∏
n

δ(ωn, ωE) (2.5)

whenKp → ∞, and becomes the most random one (the uniform distribution in many cases)
whenKp = 0.
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The method of gauge transformation is a powerful technique to derive exact properties
of random spin systems. We summarize the applicability and the results in the appendix.
If the system satisfies the conditions (I)–(V) in the appendix, the method can be applied
to it. In order to make the system gauge symmetric, we assume that the set8 forms a
topological group with an operation denoted byφ ◦ ψ ; the identity isφE and the inversion
is represented bȳφ. The gauge transformation for spin variables associated with a spin
configurationψ = (ψ1, ψ2, . . . , ψN) is defined as

Uψ : φi → φ′
i = φi ◦ ψ̄i for all i (2.6)

whereψi ∈ 8. Since8 is a topological group, the transformationUψ forms a group
homomorphic to8N and the measure dµ{φ} can be chosen as an invariant Haar measure;∫

dµ{φ} . . . =
∫

dµ{φ}Uψ . . . . (2.7)

We also assume that there exists a gauge transformation for random variables associated
with ψ ∈ 8N ;

Vψ : ωn → ω′
n ∈ � for all n (2.8)

which forms a group homomorphic to8N . Then, one can choose the measure dν{ω} as an
invariant measure;∫

dν{ω}Vψ . . . =
∫

dν{ω} . . . . (2.9)

Usually we set the elementωE the identity of the group.
A global gauge transformation associated with a spin-stateψ ∈ 8 is defined by

Ũψ : φi → ψ ◦ φi for all i. (2.10)

We assume the invariance of the Hamiltonian in terms of the global transformation,

ŨψH(φ;ω) = H(φ;ω) (2.11)

so that at least one phase transition takes place with a kind of symmetry breaking. Let
γ (φ) be an irreducible representation of8, which, in general, is a matrix in non-Abelian
cases. For simplicity, we restrict the symmetry-only Abelian cases hereafter, which means
that γ (φ) is a number. In the paramagnetic (PM) phase or in finite systems, the symmetry

〈γ (φi)〉K = 0 (2.12)

can be easily seen from equations (2.7) and (2.11). This symmetry is supposed to be
broken in the ordered phase. We treat only FM pure systems involving the FM as well as
the Kosterlitz–Thouless (KT) phases [31]. Generalization is simple and straightforward; the
FM and the SG correlation functions are defined as

f (r;K,Kp) ≡ [〈γ (φ̄0 ◦ φr)〉K ]c (2.13)

g(r;K,Kp) ≡ [〈γ (φ̄0 ◦ φr)〉K〈γ †(φ̄0 ◦ φr)〉K ]c. (2.14)

The FM and the SG order parameters,

m(K,Kp)
2 ≡ lim

r→∞ f (r;K,Kp) (2.15)

q(K,Kp)
2 ≡ lim

r→∞ g(r;K,Kp) (2.16)

distinguish the phase at(K,Kp) in such a way as
m = 0 andq = 0 in the PM phase,
m > 0 andq > 0 in the FM phase,
m = 0 andq > 0 in the SG phase.
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3. Non-frustrated random spin models

Following the asymmetric Mattis model [30] in the Ising case, we introduce non-frustrated
random spin systems for various symmetries satisfying the conditions (I)–(V) in the
appendix. The random variableωi is assigned to each lattice site, and is an element of
the same group with spin variables,ωi ∈ 8. The measure forω is identical with that for
φ; dν(ω) = dµ(ω). The Hamiltonian is expressed by use of that in the pure system as

H(φ;ω) = H0(φ ◦ ω) (3.1)

whereφ ◦ ω = (φ1 ◦ ω1, φ2 ◦ ω2, . . . , φN ◦ ωN). The distribution of randomness has the
same form with the thermal distribution;

P(ω;Kp) = exp{−KpH̃0(ω)}/Z0(Kp). (3.2)

We regard this system as non-frustrated in the following sense. Suppose that the spin-
configurationφg is one of the ground state(s) in the pure system, which means

Eg ≡ min
φ∈8N

H0(φ) = H0(φg). (3.3)

In the random system at any random-configurationω, one can find a spin-configuration,
φg ◦ ω̄ = (φg1 ◦ ω̄1, φg2 ◦ ω̄2, . . . , φgN ◦ ω̄N ), which has the same energy asEg;

H(φg ◦ ω̄;ω) = Eg. (3.4)

Therefore, the ground-state energy of the random system is always the same as that of the
pure system. This indicates the system non-frustrated. In the above argument, since we
do not restrict the type of the lattice, the usual plaquette notion cannot be used, which
is necessary for ‘non-frustrated’ in usual cases such as systems with nearest-neighbour
interactions on hypercubic lattices. The present randomization guarantees the system non-
frustrated only when the original pure system is non-frustrated.

As an example, the pure Ising model,

H0(φ) = −J
∑
〈ij〉

φiφj φi = ±1 (3.5)

provides the asymmetric Mattis model [30],

H(φ;ω) = −J
∑
〈ij〉

ωiωjφiφj (3.6)

with

P(ω;Kp) ∝ exp

{
Kp

∑
〈ij〉

ωiωj

}
(3.7)

Uψ : φi → φiψi. (3.8)

Another example is theXY model,

H0(φ) = −J
∑
〈ij〉

cos(φi − φj ) φi ∈ [0, 2π) (3.9)

providing a random model

H(φ;ω) = −J
∑
〈ij〉

cos(φi − φj + ωi − ωj) (3.10)

with

P(ω;Kp) ∝ exp

{
Kp

∑
〈ij〉

cos(ωi − ωj)

}
(3.11)

Uψ : φi → φi − ψi. (3.12)



5810 Y Ozeki

The Hamiltonian (3.9) is similar to that of theXY gauge glass (1.1), while the randomness
is different. If each spin variable takes onlyq discrete values,

φi ∈
{

0,
2π

q
,

4π

q
, . . . ,

2(q − 1)π

q

}
≡ 8q (3.13)

the pure Hamiltonian (3.9) describes theq-state clock model and provides a random model
whose Hamiltonian and the probability distribution are the same as (3.10) and (3.11) with
discrete random variablesωij ∈ 8q . This model hasZq symmetry instead ofO(2). It
is also possible to apply the present randomization to other pure models; theq-state Potts
model provides

H(φ;ω) = −J
∑
〈ij〉

δ[φi − φj + ωi − ωj , 0] φi, ωi ∈ 8q (3.14)

P(ω;Kp) ∝ exp

{
Kp

∑
〈ij〉

δ[ωi − ωj , 0]

}
(3.15)

and the Ising model with four-spin interactions provides

H(φ;ω) = −J
∑
〈ijkl〉

ωiωjωkωlφiφjφkφl (3.16)

P(ω;Kp) ∝ exp

{
Kp

∑
〈ijkl〉

ωiωjωkωl

}
. (3.17)

The behaviour of these random models are categorized and summarized in the next section.
Since� forms the same group as8, the gauge transformation forω is identical with

that forφ;

Vψ : ωi → ωi ◦ ψ̄i ∈ 8. (3.18)

This system satisfies the conditions (I)–(V) automatically. The same properties mentioned
in the Appendix are derived for the energy, the upper bound of specific heat, correlation
functions, order parameters and topology of phase diagram.

In contrast to general gauge symmetric models, more explicit relations can be derived
in the present system. The partition function satisfies

Z(K;ω) =
∫

dµ{φ} exp{−KH̃0(φ ◦ ω)}

=
∫

dµ{φ}Uω exp{−KH̃0(φ ◦ ω)}
= Z0(K). (3.19)

Thus, the free energy and its higher derivatives inK are independent ofKp, and are identical
with those in the pure system. This indicates that the thermal properties are identical with
the pure system. At a glance, the present system is trivial and not worth studying. However,
the response to the applied field such as

Hf(φ) = −h
( N∑
i=1

γ (φi)+
N∑
i=1

γ †(φi)
)

(3.20)
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is non-trivial even at zero field. This can be seen in the behaviour of the correlation
functions. Using the same technique as in (3.19), one derives

〈γ (φ̄0 ◦ φr)〉K =
∫

dµ{φ}Uω exp{−KH̃0(φ ◦ ω)}
Z0(K)

γ (φ̄0 ◦ φr)

=
∫

dµ{φ} exp{−KH̃0(φ)}
Z0(K)

γ (φ̄0 ◦ φr)γ †(ω̄0 ◦ ωr)

= f0(r;K)γ †(ω̄0 ◦ ωr) (3.21)

for anyK, where

f0(r;K) ≡
∫

dµ{φ} exp{−KH̃0(φ)}
Z0(K)

γ (φ̄0 ◦ φr) (3.22)

is the correlation function in the pure system. Then, we get important relations;

f (r;K,Kp) = f0(r;K)f ∗
0 (r;Kp) (3.23)

g(r;K,Kp) = |f0(r;K)|2. (3.24)

4. Phase diagrams and critical exponents

Equations (3.19), (3.23) and (3.24) provide relations for the phase diagram and critical
exponents between the random and the pure systems. We discuss below three cases
distinguished by the behaviours of the pure system.

4.1. Ferromagnetic pure systems

First, let us examine the case in which the pure system exhibits only the FM phase in low
temperature region (K = Kc); e.g the Ising model (3.6) ind > 2, theXY model (3.10)
in d > 3 and so on. In sufficiently strong random regime, a freezing phase without FM
long-range order appears besides the FM phase. We call this phase the spin-glass phase,
since the behaviour of correlation function is identical; it is called the Mattis spin-glass
phase in the Ising case [29, 30]. In this phase, the structure of the phase space and the
dynamical behaviour which are important in real SG phenomena would be too simple and
different from those investigated so far [1]. It is not our aim to apply the present theory
directly to real SG problems. We just present models with SG-like behaviours in correlation
functions.

We assume the asymptotic form of the correlation function in the pure system as

f0(r;K) ∼



exp{−r/ξ0(K)}
rd−2+η0

(K < Kc)

1

rd−2+η0
(K = Kc)

m0(K)
2 + exp{−r/ξ0(K)}

rd−2+η0
(K > Kc).

(4.1)

The critical exponents are defined by (4.1) and

m0(K) ∼ (K −Kc)
β0 (4.2)

ξ0(K) ∼ |K −Kc|−ν0. (4.3)
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Figure 1. The phase diagram of the non-frustrated random model
associated with an pure FM system. There are three kinds of phases,
the PM, the FM and the SG. Four kinds of critical regimes are
indicated as (i), (ii), (iii), and (iv).

Equations (3.23) and (3.24) with the definition of order parameters in section 2 lead to

m(K,Kp) = m0(K)m0(Kp) (4.4)

q(K,Kp) = |m0(K)|2 (4.5)

providing the phase diagram in figure 1. In such simple random systems, no re-entrant
transition is observed. The result is quite similar to the asymmetric Mattis model [30].
The SG-like phase exhibiting the same behaviour of correlation functions in the SG phase
always appears in systems associated with any FM pure systems in the present class of
random spin systems. This is a common feature in gauge symmetric random systems [24].

Four kinds of critical regime exist in the phase diagram (see figure 1):
(i) K ∼ Kc andKp > Kc,
(ii) K ∼ Kc andKp < Kc,
(iii) K > Kc andKp ∼ Kc,
(iv) K ∼ Kc andKp ∼ Kc (the multicritical point).

Table 3. The relations of critical exponents between the pure and random systems. The critical
regimes, (i), (ii), (iii) and (iv) in figure 1 are distinguished in the random system. The exponents,
β, ν, η for the FM ordering andβ̃, ν̃, η̃ for the SG ordering are related toβ0, ν0, η0 in the
pure system by use of the exact relations (3.18) and (3.19). The bars indicate that corresponding
quantities are analytic and do not exhibit singularities in these regimes.

(i) (ii) (iii) (iv)

β̃ 2β0 2β0 — 2β0

ν̃ ν0 ν0 — ν0

η̃ d − 2 + 2η0 d − 2 + 2η0 — d − 2 + 2η0

β β0 — β0 2β0

ν ν0 — ν0 ν0

η η0 — η0 d − 2 + 2η0

The critical exponents in the random system are denoted byν, β, η for the FM ordering
and ν̃, β̃, η̃ for the SG ordering. The asymptotic forms off (r;K,Kp) andg(r;K,Kp) are
assumed similarly as in (4.1) withm0(K), ξ0(K) andη0 replaced bym(K,Kp), ξ(K,Kp)
andη, andq(K,Kp), ξ̃ (K,Kp) andη̃, respectively. Applying (3.23) and (3.24) to the above
definitions, we obtain the relations of critical exponents between the pure and random
systems. The results are summarized in table 3. As for the FM critical exponents, the
universality (constantness ofβ andν) and the weak universality (constantness ofβ/ν andη)
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Figure 2. The phase diagram of the non-frustrated random model
associated with a KT-type pure system. Three kinds of phases, the
PM, the uniform KT (UKT) and the random KT (RKT), are indicated.

hold along the boundary of FM phase, (i) and (iii), except at the multicritical point. The
universality and weak universality for the SG critical exponents hold along the boundary of
PM phases, (i) and (ii), including the multicritical point.

4.2. Kosterlitz–Thouless-type pure systems

Next, we consider the case in which the pure system exhibits the KT phase [31] in
temperature region belowK = Kc; e.g. theXY model (3.10) ind = 2. Strictly speaking,
the global symmetry mentioned in section 2 is not broken in the KT phase. One can define
the KT phase by the region where the correlation length diverges. As discussed in the
previous subsection, two different correlation lengths,

ξ(K,Kp) ≡ lim
r→∞

∣∣∣∣ ∂∂r log |f (r;K,Kp)|
∣∣∣∣−1

(4.6)

ξ̃ (K,Kp) ≡ lim
r→∞

∣∣∣∣ ∂∂r logg(r;K,Kp)
∣∣∣∣−1

(4.7)

are defined in the corresponding random system. The phase diagram is obtained as in
figure 2. There are two kinds of KT phases, the uniform KT (UKT) and the random KT
(RKT) defined by

ξ < +∞ and ξ̃ < +∞ in the PM phase,
ξ = +∞ and ξ̃ = +∞ in the UKT phase,
ξ < +∞ and ξ̃ = +∞ in the RKT phase.
In the UKT phase which is continued from the KT phase of the pure system, both the

FM and the SG correlations are critical. In the RKT phase, the SG correlation is critical
while the FM one is short-range. In theXY gauge glass model in two dimension, it has
not yet been clarified if these KT phases exist or not. Korshunov discussed the instability
of KT phases in any finite random regime [32]. The present theory provides an example of
random systems which exhibits the UKT as well as the RKT phases in the low-temperature
region.

4.3. Two-dimensional clock systems

Finally, we consider the case in which the pure system exhibits successive phase transitions,
PM → KT → FM, like theq-state clock model (3.10) withq > 5 in two dimensions [33].
The PM–KT and KT–FM transitions are supposed to occur atK = Kc1 andK = Kc2,
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Figure 3. The phase diagram of the non-frustrated random model
associated with the pure clock model ind = 2. There exist six
kinds of phases, the PM, the FM the SG, the UKT, the RKT and
the critical glass (CG).

Table 4. Behaviours of correlation functions in the phases shown in figure 3.

Phase FM correlation SG correlation

PM Short range Short range
FM Long range Long range
SG Short range Long range
UKT Critical Critical
RKT Short range Critical
CG Critical Long range

respectively. The phase diagram of the non-frustrated random system is obtained as in
figure 3. There are six kinds of thermodynamic phases, the PM, the FM, the SG, the
UKT, the RKT and the critical glass (CG) phases (see table 4). In the CG phase, the SG
correlation is long-range while the FM one is critical. This means that the snap shot of the
system looks like that in the KT phase while spins are freezing. Such behaviour has not
been observed in real material.

5. Remarks

We propose a class of random spin systems without frustration. All models have gauge
symmetry, and the method of gauge transformation can be applied to them. The phase
diagram and critical exponents for both SG and FM orderings are related with those in the
original pure system. The result for the absence of re-entrance is not completely rigorous
in the method of gauge transformation. It can be shown exactly for the present models—
especially for theXY gauge glass-like model with the Hamiltonian (3.10), however, one
should note that the randomness is much different from theXY gauge glass model. They
are regarded as rigorous examples for the results of the gauge transformation. They are
also rigorous examples for the existence of the SG-like phases, in which the behaviour of
the correlations is similar, with various symmetries.

The present theory is almost applicable to non-Abelian systems except for the argument
of correlations. In non-Abelian systems, the system is gauge symmetric providing the same
results in the appendix and exact relations such as (3.23) and (3.24) can be derived with
small modification; order parameters become matrices. However, it is not straightforward
to obtain the phase diagram exactly from such matrix relations.

Since the present models can be analysed exactly, they help us to understand the phase
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transition and the critical phenomena in random systems with controversial properties.

Appendix. Gauge symmetry and the method of gauge transformation

A system with the following conditions (I)–(V) is gauge symmetric and has the properties
mentioned below [24].

(I) The set8 forms a topological group with an operation denoted byφ ◦ ψ .
(II) The measure dν{ω} is an invariant measure;∫

dν{ω}Vψ . . . =
∫

dν{ω} . . . . (A1)

(III) The Hamiltonian is invariant in terms of the gauge transformation as

UψVψH(φ;ω) = H(φ;ω). (A2)

(IV) The distribution function is transformed as

VψP(ω;Kp) = Y (Kp)
−1 exp{−KpH̃(ψ;ω)} (A3)

providing

P(ω;Kp) = Y (Kp)
−1 exp{−KpH̃(φE;ω)} (A4)

whereφE = (φE, φE, . . . , φE) and

Y (Kp) =
∫

dν{ω} exp{−KpH̃(φE;ω)}. (A5)

(V) The Hamiltonian is invariant in terms of the global transformation;

ŨψH(φ;ω) = H(φ;ω). (A6)

In the system satisfying the above conditions, the energy can be obtained exactly on
K = Kp

E(Kp,Kp) = −J ∂

∂Kp
lnY (Kp) (A7)

and an upper bound on the specific heat is also obtained as

C(Kp,Kp) 6 kBK
2
p

∂2

∂K2
p

lnY (Kp). (A8)

The lineK = Kp is called Nishimori line [22] in the Ising case.
The FM correlation functions satisfies

f (r;K,Kp) ≡ [〈γ (φ̄0 ◦ φr)〉K〈γ †(φ̄0 ◦ φr)〉Kp ]c (A9)

which provides the exact relation between the FM and the SG correlation functions on
K = Kp;

f (r;Kp,Kp) = g(r;Kp,Kp). (A10)

Using these relations, one obtains the following properties for the phase diagram [22–24]:
(a) There exits no SG phase onK = Kp.
(b) The boundary of FM phase is vertical or re-entrant.
(c) Using the modified model [23, 24, 34], a plausible argument for the verticality can

be made.
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